Phase equilibria and transformations in the system Li₂GeO₃-Na₂GeO₃

A. R. WEST, A. J. BLAKE

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, Aberdeen, UK

The phase diagram has been determined using a combination of high temperature powder diffraction and quench furnace equilibration. Na_2GeO_3 forms a range of solid solutions which covers over half of the diagram at solidus temperatures (900° C) but whose extent is much more restricted at lower temperatures. Na_2GeO_3 solid solutions may undergo a variety of reactions on cooling, which include phase transformation and coherent precipitation.

1. Introduction

The present report forms part of a study on synthetic complex oxide systems which contain two alkali metal ions. In an earlier study of the silicate system Na₂SiO₃-Li₂SiO₃, extensive solid solution formation was found at high temperatures and various transformation reactions occurred during cooling of these solid solutions [1]. An interesting observation was the occurrence of a range of solid solutions which apparently had a modulated superstructure and whose modulation wavelength varied with composition [2]. It was felt that the corresponding germanate system might also show interesting solid solution effects. The end-member phases Na₂GeO₃ and Li₂GeO₃ are both well-known [3, 4], but reactions between them have not been studied previously. Li_2GeO_3 is isostructural with Li_2SiO_3 and Na_2SiO_3 [5-7]. Its structure can be thought of either as (i) a distorted wurtzite superstructure, with hexagonal close packed oxygen and cations ordered on one set of distorted tetrahedral sites, or as (ii) a (GeO₃)₀₀ "Zweiereinfachketten" chain structure.

2. Experimental

Starting materials were Li_2CO_3 , Na_2CO_3 (both reagent grade) and GeO_2 (electronic grade). Compositions (1 to 2 g each) were mixed into a paste with acetone, dried, and fired in Pt crucibles in electric muffle furnaces, initially at 600° C to drive off CO_2 , and finally at 800 to 850° C for 1

© 1976 Chapman and Hall Ltd. Printed in Great Britain.

to 3 days. Completeness of reaction was checked using Guinier X-ray powder methods.

Two techniques were used to determine the phase diagram. (1) Small samples (about 50 mg) of the reacted compositions were wrapped in Pt foil and suspended in conventional, vertical tube quench furnaces for times ranging from 2 h to 3 days. Runs were terminated by dropping the samples into a dish of mercury. The furnace was calibrated at the gold point (1063° C); measured temperatures are accurate to $\pm 4^{\circ}$ C. The quenched samples were examined by optical microscopy as well as by X-ray methods. (2) Small samples (10 to 20 mg) were mounted on a Pt gauze and their powder patterns taken at high temperatures with a continuously-recording Nonius Guinier-Lenne camera. This method was particularly useful for determining the limits of the solid solution fields and also as a check on melting behaviour at the solidus. Temperatures of phase transitions, phase boundaries etc, as determined by this method, are accurate to $\pm 25^{\circ}$ C.

An attempt was made to use DTA to study the subsolidus equilibria. However, it was found that the heating and cooling rates used (about 20° C min⁻¹) were much too rapid for equilibrium to be followed without considerable hysteresis; in addition, metastable side reactions occurred which complicated the DTA traces.

3. Results and discussion

3.1. The phase diagram

Using the combined techniques of quench furnace equilibration and high temperature powder diffraction, the equilibrium diagram shown in Fig. 1 was constructed. The system is binary at all temperatures. A large range of solid solutions extends from Na₂GeO₃ to $57 \pm 2\%$ Li₂GeO₃* at solidus temperatures. The liquidus curve above these solid solutions passes through a thermal minimum at $42 \pm 6\%$ Li₂GeO₃ and $895 \pm 6^{\circ}$ C and the most lithium-rich member of these solid solutions melts incongruently to Li₂GeO₃ solid solution (ss) plus liquid at 914 \pm 7° C.

The liquidus relations are shown dashed for the most part because quantitative data were difficult to obtain. There is very little tendency to glass formation in melts of this system. Thus, although glass was observed in some samples (of compositions near to the thermal minimum) which had been quenched rapidly from above solidus temperatures, it was difficult to prepare specimens of pure glass, even by quenching from temperatures which must have been well above the liquidus for those compositions. If slightly slower cooling rates were used, such as cooling the samples by blowing on them rather than by dropping them into mercury, no glass was generally observed. The solidus temperatures were determined mainly from a comparison of the results of sets of identical equilibration runs on samples of different composition (often two or three samples were heated concurrently in the same furnace). The physical appearance of the samples was assessed loose powder, glazed film, etc—and a microscope study was made of textures, crystal quality (extinction) and the occurrence of glass.

The subsolidus equilibria were studied most reliably from high temperature powder X-ray photographs. The solvus curve limiting the compositional extent of the Na₂GeO₃ solid solutions was determined by noting the temperature at which Li₂GeO₃ was observed to appear in the X-ray photographs on the cooling cycle. The reverse reaction, dissolution of Li2GeO3 by Na2GeO3ss, was followed on the heating cycle for a few compositions in order to check that the temperatures obtained on cooling had not been reduced significantly by hysteresis. As shown in Fig. 1, the extent of the Na₂GeO₃ solid solution field undergoes a dramatic contraction with falling temperature. Li₂GeO₃ forms a much more restricted range of solid solutions, dissolving a maximum of $17 \pm$ 5% Na_2GeO_3 at the solidus. There is a close similarity between Fig. 1 and the phase diagram of the corresponding silicate system, $Li_2SiO_3 -$

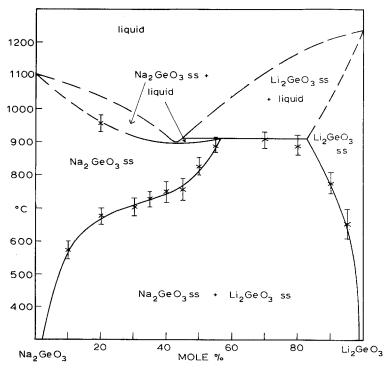


Figure 1 Equilibrium phase diagram for the system $Na_2 GeO_3 - Li_2 GeO_3$. The data points marked are those determined by high temperature powder diffraction.

* All percentages are mol %.

 Na_2SiO_3 [1]. In the germanates, the Na_2GeO_3ss field extends some 4% further at the solidus than that of Na_2SiO_3ss , and melting temperatures are generally about 50° C higher.

The variation of unit cell parameter with solid solution composition at 800° C was determined from high temperature powder photographs and is shown in Fig. 2. Powder lines from the Pt gauze sample holder acted as an internal standard and for this purpose the *d*-spacings of the first four Pt lines at 800° C were calculated to be 2.28, 1.98, 1.40 and 1.19 Å (using a coefficient of linear expansion for Pt of 1×10^{-5}). The *d*-spacings of the (002) and the overlapping (200) and (130) lines of the solid solutions were then measured and from these, cell dimensions were calculated. The solid solutions are presumably formed by disordering of Na and Li over the alkali ion sites; from Fig. 2 the cell parameters change smoothly but non-linearly with composition and so Vegard's Law is not obeyed. It was not possible to determine the variation of cell parameters with composition at room temperature, because most of the (Na_{2-x}, Li_x) GeO₃ solid solutions decomposed, even on rapid cooling (see later).

Indexed powder diffraction patterns for Li_2GeO_3 and Na_2GeO_3 are given in Table I and unit cell dimensions determined from the refined

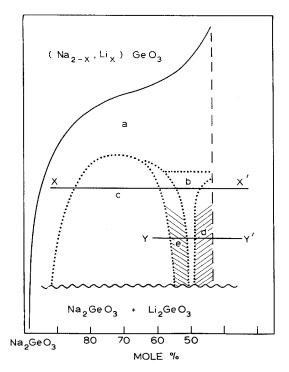


Figure 2 Variation of unit cell parameters with composition at 800° C.

powder data in Table II. The data were recorded with a Philips Hägg Guinier camera using $CuK\alpha$ radiation, and KCl ($a_0 = 6.2931$ Å) was added as an internal standard. These new data show many more lines than are given in the literature [3, 4, 8]and the latter data are either unindexed (Li_2GeO_3) or indexed on the wrong unit cell (Na₂GeO₃). The crystal structure of Li2GeO3 is known [5]; it is isostructural with Li_2SiO_3 and Na_2SiO_3 [6, 7]. Na₂GeO₃ also appears to be isostructural from its powder pattern, although single crystal studies to confirm this have not been carried out. Na₂GeO₃ is closer to being geometrically pseudohexagonal than is Li₂GeO₃ and most of the powder lines of Na₂GeO₃ could not be uniquely assigned with certainty.

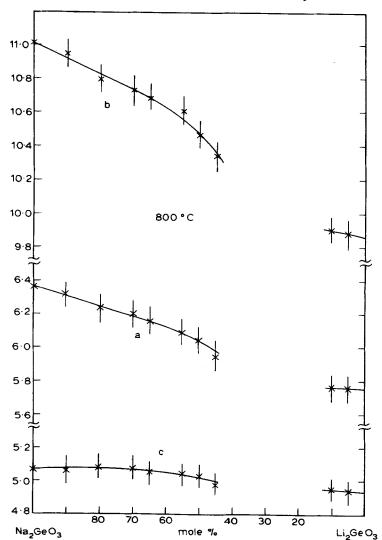
One difficulty in working with Na₂GeO₃-rich compositions was that weak extra powder lines were sometines observed. These are most likely due to an impurity phase, possibly a previously unreported sodium germanate phase. The extra lines were usually absent from high temperature powder photographs taken on the cooling cycle over the range 800° C to room temperatures and so are not thought to represent a genuine feature of the Na₂GeO₃-Li₂GeO₃ system.

3.2. Metastable phases and reactions

Although the equilibrium phase diagram is relatively simple, the behaviour of (Na_{2-x}, Li_x) GeO₃ solid solutions on cooling is complex and depends on both cooling rate and composition. With fairly slow cooling, e.g. from 800° C to room temperature in a few hours, an equilibrium pathway is followed yielding the assemblage $(Na_2GeO_3 + Li_2GeO_3)$. However, with more rapid cooling rates, metastable products may be obtained. Fig. 3 summarizes schematically the phenomena which have been observed so far. Solid solutions containing $\gtrsim 10\%$ Li₂GeO₃ cannot usually be preserved intact to room temperatures, even on rapid quenching (section X-X'). Compositions around 50% Li2GeO3 transform to a metastable phase, low-(Na, Li)₂GeO₃ss (region b). Intermediate compositions (~15 to 40% Li_2GeO_3) decompose, to yield $(Na_2GeO_3ss + low - (Na, Li)_2GeO_3ss)$ and it appears than an immiscibility dome occurs within the undercooled $(Na_{2-x}, Li_x)GeO_3$ solid solution (region c). Low-(Na, Li)₂GeO₃ appears to form a short range of solid solutions when prepared by rapid quenching and these solid solutions precipitate the excess Na₂GeO₃ and Li₂GeO₃ respectively,

TABLE I Powder diffraction da	ata
-------------------------------	-----

$d_{obs}(A)$	d _{calc} (Å)	Ivis	hkl	d _{obs} (Å)	$d_{calc}(A)$	Ivis	hkl
Li_2GeO_3							
4.81	4.81	80	020	2.261	2.262	5	041
4.76	4.76	60	110	2.238	2.238	10	221
3.40	3.39	100	111	2.224	2.222	40	022
2.77	2.77	60	130	1.928	1.927	5	310
2.739	2.739	40	200	1.909	1.909	20	310
2.418	2.418	40	$\binom{002}{004}$	1.899	1.899	40	1 32
2.406 ь*	2.405	60	040	1.890	1.888	40 40	202 132
	2.402		131	1.881 1.812	1.881 1.811	40	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}$
2.381	2.383	20	$\begin{cases} 201 \\ 220 \end{cases}$	1.804	1.804	5	$\frac{2}{1}51$
2 1 6 0	2.380	20		1.781	1.780	20	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
2.160	2.160				1.772		(042)
2.157	2.156	10	112	1.770	1.770	10	241
2.135	2.136	20	221 132	1.713	1.712	20	$(\frac{2}{3},\frac{1}{3},\frac{1}{3})$
1.821	1.821 (1.815	20	\int_{150}^{152}	1.693	1.696	10	060
1.814	1.813	20	202	1.671	1.674	40	330
1 907		5	240		(1.568		$(\bar{1}13)$
1.807	1.807	5		1.568	1.567	40	023
1.793 1.706	1.794 1.705	20 10	310 042	1.564	1.565	40	113
1.706	1 .705 (1.700	10	∫151	1.520	1.519	5	312
1.699		20			(1.510		$\int 312$
1 602	1.696 1.693	20	241	1.509	1.510	10	152
1.693			241 311	1.485	1.485	5	$(\frac{1}{2}, \frac{1}{6}, \frac{1}{2}, \frac{1}{6}, $
1.681 1.604	1.682 1.603	10 20	060	1.464	1.465	5	400
1.586	1.587	20 40	330	1.441	1.440	40	$\overline{1}$ 3 3
1.529	1.527	20	113	1.436	1.435	40	203
1.450	1.452	20 5	152	1.432	,1.432	20	,133
1.430	1.448	10	242		∫1.422		$\int 261$
1.441	1.441	20	312	1.421	1.420	5	$\{\bar{1}, \bar{1}, 1$
1.393	1.393	40	133		1.407		332
1.389	1.389	10	203	1.408	1.404	20	401
1.384	1.384	10	260		1.398		062
1.501	(1.336	10	(062)	1.397	1.398	20	420
1.336	1.335	40	223		1.393		261
1.550	(1.333	10	170	1.391	1.391	20	350
1.330	1.330	10	,261		1.386		223
	1.327		$\int 332$	1.385	1.385	40	332
1.326	1.325	40	350		1.382		043
	1.318		401	1.372	1.372	5	351
1.317	1.317	10	420		1.365		171
1.285	1.285	20	171	1.362	1.362	10	421
1.276	1.203	5	351	1.345	1.345	10	421
1.270	1.271	20	421		∫ 1.273	F	$\overline{2}62$
low-(Na, Li),				1.272	1.272	5	080
5.15	5.14	40	$\overline{1}$ 1 0		1.257		(243
5.09	5.09	60	020	1.256	1.255	10	{440
5.03	5.02	20	110		1.255		(153
3.564	3.560	80	111	Na ₂ GeO ₃			
3.525	3.521	80	111	5.44	60	020,	1.1.0
2.971	2.969	20	130	5.41	40 }	020,	10
2.930	2.929	40	200	3.64	100	111	
2.901	2.903	20	130	3.127	80)	130,2	200
2.571	2.568	20	$\bar{2} 2 0$	3.109	60	130,	200
2.549	2.545	40	131	2.640	80 Ì	131,2	201
2.521	2.519	40	201	2.629	60 }		501
2.502	2.503	20	131	2.463	80 '	002	
2.471	2.470	100	002	2.366	40	221	
2.281	2.278	10	$\bar{2} 2 1$	2.240	40	022,	112


$d_{\rm obs}$ (Å)	d_{calc} (A)	Ivis	h k l	$d_{\rm obs}$ (Å)	$d_{\text{calc}}(\mathbb{A})$	I _{vis}	hkl
Na ₂ GeO ₃ continued		·······		Na ₂ GeO ₃ cont	tinued		
2.050	40)	150,240,310		1.560	10		
2.042	40		1.501	10			
1.937	801			1.493	40		
1.935	40	1 3 2, 2 0 2	1.487	20			
1.894	60	151,2	41	1.459	20		
1.812	40)	222,060,330		1.455	100		
1.802	80		1.441	20			
1.572	40'			1.433	20		
1.567	10			1.405	20		

* b = broad.

on annealing at about 400° C. In the initial stages, the precipitates are coherent with the matrix (regions e and d, Fig. 3). The phenomena in regions b to d have been studied in some detail and are described below.

3.2.1. Low-(Na, Li)₂GeO₃

The composition 50% Li2GeO3 is not a special

composition as regards the Na₂GeO₃ss field; it is merely one member of the solid solution series. However, a stoichiometric metastable phase, low-(Na, Li)₂GeO₃, can be prepared by cooling the high temperature solid solution fairly quickly (850° C to room temperature in about 1 to 20 secs). At these cooling rates, the equilibrium precipitation of Li₂GeO₃ss is bypassed and the

Figure 3 Schematic representation of the metastable phases and reactions which have been observed on cooling Na₂ GeO₃ solid solutions. The vertical axis is a combination of temperature and cooling rate. (a) undercooled single phase solid solution; (b) low-(Na, Li)₂ GeO₃ ss; (c) metastable two-phase assemblage Na2 $GeO_3 ss + matrix;$ (e) $Na_2 GeO_3$ precipitate coherent with low-(Na, Li)₂GeO₃ matrix. Section X-X' represents the products of rapid quenching (850°C to 25°C in ~1 sec). Y-Y' represents the products of rapid quenching followed bv annealing at ~400° C.

Phase	Symmetry	a (Å)	b (A)	c (Å)	Reference
Li, GeO,	orthorhombic	9.63	5.46 _s	4.85 ₀	[5]
Li, GeO,	orthorhombic	5.47	9.62	4.83	this work
Na,GeO,	orthorhombic	6.21	10.88	4.92	this work
low-(Na, Li) ₂ GeO ₃	monoclinic γ = 91.5 ± 0.5° ^a	5.86 ± 0.01	10.18 ± 0.02	4.94 ± 0.01	this work
Li,SiO,	orthorhombic	5.392	9.39	4.66	[1]
Na, SiO,	orthorhombic	6.07	10.48	4.82	[6]
low-(Na, Li) ₂ SiO ₃	monoclinic $\gamma = 91.5 \pm 0.5^{\circ a}$	5.73	9.86	4.77	[1]

TABLE II Crystallographic data

^a Not the smallest unit cell, but chosen for simplicity.

undercooled solid solution experiences a phase transition. Low-(Na, Li)₂GeO₃ apparently forms a short range of solid solutions on either side of the ideal composition but these solid solutions decompose on annealing to yield low-(Na, Li)₂GeO₃ and either Na₂GeO₃ or Li₂GeO₃. By DTA, low-(Na, Li)₂GeO₃ transforms to the undercooled high temperature solid solution at 654° C (642° C on cooling). The timescale of the DTA experiment. with a quick change from heating to cooling cycles at about 680° C, was sufficiently rapid for the transition to be observed before much decomposition to the equilibrium assemblage of (Na₂GeO₃ss + Li₂GeO₃ss) had occurred (as confirmed by the powder photograph of the sample taken after DTA). The transition: low-(Na, Li)₂GeO₃ \implies undercooled solid solution, could not be observed directly by high temperature powder diffraction because 1 to 2 h are required to take an exposure and decomposition of low-(Na, Li)₂GeO₃ to the equilibrium assemblage occurred within this time at about 600 to 650° C. However, the occurrence of low-(Na, Li)₂GeO₃ is analogous to that of a corresponding meta-silicate phase, low-(Na, Li)2 SiO_3 , and in the latter case the low-high transition was observed by high temperature powder diffraction [1].

From single crystal X-ray photographs, low-(Na, Li)₂GeO₃ is monoclinic. It is structurally related to the orthorhombic high temperature solid solution as its powder pattern is derived from that of the latter simply by the splitting of certain lines. For the purpose of indexing the powder pattern and in order to indicate the close similarity to the high temperature structure, a monoclinic unit cell has been chosen which is a slight distortion ($\gamma = 91.5^{\circ}$) of the orthorhombic cell. However, this cell, which is C-centred with c as the unique axis, does not meet space group requirements and a smaller, primitive monoclinic cell should be chosen for correctness. Crystals of low-(Na, Li)₂ GeO₃ were twinned with the *bc* plane of the C-centred cell as the twinning plane. On e.g. (h k 0) precession photographs, the twinning was observed as the doubling of spots along a^* ; the magnitude of these spot separations increased as k (or $|\overline{k}|$) increased (no splitting observed for k = 0). Powder data for low-(Na, Li)₂GeO₃ are given in Table I and unit cell parameters in Table II. Also included in Table II, for comparison purposes, are literature data for the sodium, lithium metasilicates.

3.2.2. Decomposition of $(Na_{2-x}, Li_x)GeO_3$ solid solutions during cooling $(0.3 \le x \le 0.8)$

Na2GeO3 solid solutions of intermediate composition decompose, even on rapid quenching ($\sim 1 \text{ sec}$), into two phases which are approximately Na₂GeO₃ and low-(Na, Li)₂GeO₃. The compositions of these products are uncertain because the powder patterns are of poor quality with some diffuse and streaked lines. The rapidity of this decomposition reaction, together with the relative flatness of the Na₂GeO₃ ss solvus curve in this composition range (Fig. 1) points to the occurrence of an immiscibility gap or spinodal within the undercooled solid solutions. It was hoped to study this decomposition reaction on DTA cooling cycles and perhaps to plot out the position of an immiscibility dome. However, the DTA cooling rates were too slow to prevent some decomposition to the equilibrium assemblage of $(Na_2GeO_3ss + Li_2GeO_3ss)$ from occurring, and so the DTA traces, which were quite complex, could not be interpreted unambiguously. Precession photographs of a "single crystal" of composition 30% Li₂GeO₃, quenched from 890° C, showed the presence of two phases, Na₂GeO₃ and low- $(Na, Li)_2 GeO_3$ (approximate compositions) in very similar orientations: corresponding unit cell axes were parallel to within ± 1 to 2°. However, the photographs were of poor quality. Na_2GeO_3 spots were rather diffuse and the low-(Na, Li)₂GeO₃ spots were multiple (in addition to the doubling arising from twinning).

It is an interesting observation that the metastable immiscibility dome (assuming that it exists) has, as one of its members, (Na, Li)₂GeO₃ and not Li_2GeO_3 . This is presumably for a combination of structural and kinetic reasons. First, low-(Na, Li)2 GeO_3 does have some stability and can be easily prepared, although it does not appear on the equilibrium phase diagram. Second, in the initial stages of decomposition the products as well as having similar orientations, are probably connected by a coherent interface. The stresses due to differences in volume of the phases on either side of the interface will be considerably less for $Na_2GeO_3/(Na, Li)$ $_2$ GeO₃ than for Na₂GeO₃/Li₂GeO₃. Hence, the initial decomposition to $(Na, Li)_2 GeO_3 + Na_2 GeO_3$ should have a lower activation energy than decomposition to the equilibrium assemblage, $Na_2GeO_3 + Li_2GeO_3$.

3.2.3. Precipitation of Li₂GeO₃ from low-(Na, Li)₂GeO₃ss

The phase low-(Na, Li)₂GeO₃ can apparently be prepared with an excess of Li2GeO3 in solid solution, as shown by quenching composition 55% Li_2GeO_3 from about 890° C. The product of such experiments was single-phase by X-ray diffraction but its powder pattern was virtually identical to that of low-(Na, Li)₂GeO₃; no shifts in d-spacing could be detected. On annealing this quenched material at 300 to 600° C, a small amount of Li2GeO3 was precipitated, but at the lower annealing temperatures, ~ 400 to 480° C, the Li₂GeO₃ phase had an anomalous powder pattern. The powder lines were generally broad and diffuse and were shifted slightly, usually to higher d-spacing compared with "normal" Li2GeO3. In addition, small variations in powder pattern occurred from sample to sample, notably with the (111) reflection which was sometimes split. This splitting could possibly be due to the appearance of (021)which is normally a systematically absent reflection but is more likely due to a monoclinic distortion causing the separation of (111) and $(\overline{1}11)$ reflections.

Single crystal X-ray studies of material annealed at 400° C showed that the crystallographic axes of the Li₂GeO₃ precipitate were accurately aligned (to within 1° or better) with the corresponding pseudo-orthorhombic axes of low-(Na, Li)₂GeO₃. The Li₂GeO₃ spots were all uniformly somewhat diffuse. The unit cell dimensions of Li₂GeO₃ could not be determined with sufficient accuracy from precession photographs to confirm the small differences between normal and anomalous Li₂GeO₃ observed in Guinier powder photographs.

The most likely cause of the anomalous Li_2GeO_3 powder pattern is that the Li_2GeO_3 precipitate is coherent or partly coherent with the (Na, Li)₂ GeO₃ matrix. In the earliest stages, perhaps in the as-quenched material, zoning probably occurs giving a non-random solid solution. On annealing, these zones form discrete precipitates but the precipitate/matrix interface is still continuous. Coherency stresses could account for both the *d*spacing shifts ("stretching" of the Li₂GeO₃ structure) and the splitting of the (1 1 1) reflection (to match the monoclinic symmetry of the low-(Na, Li)₂GeO₃ matrix). The observed line broadening is probably a combination of coherency strains and small particle size.

3.3. General comments

Solid solutions formed by Na \iff K replacement are common, e.g. in the feldspars. However, the difference in size of Na⁺ and Li⁺ is normally too great for extensive solid solutions to form by Na \iff Li substitution. In the present system, Na₂GeO₃ forms extensive solid solutions but only at high temperatures, and most of these solid solutions decompose very quickly during cooling.

Several stages in the decomposition of the solid solutions have been identified. There is indirect evidence of the occurrence of a spinodal within the metastable, undercooled solid solutions. Decomposition is very rapid within this spinodal and proceeds more or less to completion with cooling rates as high as 200 to 500° C sec⁻¹. Hence X-ray side bands, which are generally observed in the early stages of spinodal decomposition, were absent from the present materials. One example of coherent precipitation, that of Li2GeO3 from low- $(Na, Li)_2$ GeO₃ss, has been studied in some detail. Other examples could probably be found; e.g. precipitation of low-(Na, Li)₂GeO₃ from an Na₂GeO₃ solid solution which has a composition just to the Na₂GeO₃-rich side of the spinodal. These coherent reactions are made possible by (a) the structural similarity of the phases Na₂GeO₃, low-(Na, Li)₂GeO₃ and Li₂GeO₃ and (b) by their not too dissimilar unit cell dimensions.

During an earlier study of the corresponding metasilicate system, a modulated superstructure was found in compositions around 50% Na₂SiO₃ [2]. This phase apparently formed as an intermediate during the conversion: high temperature solid solution \rightarrow modulated superstructure \rightarrow low-(Na, Li)₂SiO₃ss. With the metagermanate solid solutions, it was not generally possible to suppress the transformation to low-(Na, Li)₂GeO₃ss with the quenching rates available. Hence it is not known whether a modulated superstructure is also possible in this system.

References

- 1. A. R. WEST, J. Amer. Ceram. Soc., in press.
- 2. A. R. WEST, in preparation.
- M. K. MURTHY and J. AGUAYO, J. Amer. Ceram. Soc. 47 (1964) 444.
- 4. M. K. MURTHY and J. IP, *ibid* 47 (1964) 328.
- 5. H. VÖLLENKLE and A. WITTMAN, *Monat. Chem.* 99 (1968) 244.
- 6. W. S. MCDONALD and D. W. CRUICKSHANK, Acta Cryst. 22 (1967) 37.
- 7. H. SEEMAN, *ibid* 9 (1956) 251.
- 8. ASTM Powder Diffraction File, Card No. 18-1217.

Received 10 October and accepted 11 November 1975.